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ABSTRACT
The two hypotheses of the origin of cancer are the “stem cell” hypothesis and the “Dedifferentiation” or “Re-programming” hypothesis. Cancers 
are derived from a single cell, with all the cells within the tumor exhibiting heterogeneity of genotypes and phenotypes. Cancer cells, which 
do not contact inhibit; have growth control; terminally differentiate; are“immortal”; also, do not have function gap junctional intercellular 
communication (GJIC).The interpretation of animal experiments has suggested that the carcinogenic process consists of three phases, namely, 
the “initiation” phase; the “promotion” phase and the “progression” phase. With the isolation of embryonic-, induced pluripotent-, somatic 
nuclear transfer- and adult - stem cells, observations have shown that stem cells express the embryonic gene, Oct4A, but not the gap junction 
genes. With the isolation of “side population” cells from cancer cell lines, which were shown to sustain the growth of tumors, the terms, 
“cancer-initiating” and “cancer stem cells”, were born. Use of human adult stem cells, expressing Oct4A, were shown to give rise to “initiated” 
Oct4A- positive cells which, after further modification, could give rise to “cancer stem cells”, whereas their differentiated daughters, not 
expressing Oct4A, never gave rise to “initiated” cells. There are “cancer stem cells” that do not express Oct4A. However, they do express 
their connexin gene but are unable to have functional GJIC. Therefore, the strategy to target “cancer stem cells” for cancer therapy must take 
recognize that there are two different “cancer stem cells” and therefore, two different approaches will have to be developed.
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Quote 
“What clearly lies ahead is an era of research on intercellular 

communication at both local and systemic levels. The balance 
between proliferation and differentiation must be examined at the 
molecular level, with emphasis on the interaction between growth 
factors, growth inhibitors, and their receptors and ultimate targets.” 
V.R. Potter, Biol.Med.2:243 (1981).

Introduction
What clearly lies ahead is an era of research on intercellular 

communication at both local and systemic levels. The balance 
between proliferation and differentiation must be examined at the 
molecular level, with emphasis on the interaction between growth 
factors, growth inhibitors, and their receptors and ultimate targets.” 
V.R. Potter, Biol.Med.2:243 (1981).

A Complicated Origin of the Concept of the Cancer 
Stem Cell

While the concept of “cancer stem cells” is relatively recent, there 
seems to be multiple historic and multi-disciplinary contributions 
to this term. Not everyone in the field of cancer research will have 
the same definition of “cancer stem cells”, let alone, have a universal 
understanding of their characteristics, origin or “biomarkers”. Some 
even resist the term, “cancer stem cells” and use the term, “cancer 
initiating cells”. Even today, the use of the term, “cancer cells”, helps 
to confuse the distinction made today between “cancer stem cells” 
and “cancer non- stem cells” that comprise a cancerous tumor.

There have been some very distinct hypotheses as to the origin 
of cancers, and by implication, “cancer stem cells”, namely, the Stem 
Cell hypothesis [1-9] versus the De-differentiation or more recently, 
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the “Reprogramming” [10], hypothesis. In the stem cell hypothesis, 
long before the isolation of human embryonic stem cells [11,12], 
“induced pluripotent stem” cells [13], somatic nuclear transfer 
stem cells [14] or human organ- specific stem cells [15-23], various 
disciplines, such as cancer research, embryology, developmental 
biology, had conceived the concept of stem cells. The late Van R. 
Potter viewed cancer as “oncology as partially blocked ontogeny” [4], 
although he had no technical knowledge of any biologically-defined 
stem cell being the origin of a cancer, let alone the “cancer stem cell”.

 Ignoring, for the moment, early ideas as to how a normal cell 
ultimately became a cancer cell or a “cancer stem cells”, some early 
biological characteristics of normal versus cancer cells will be used 
later to distinguish between two type types of “cancer stem cells” [ 
24,25]. One of those early characteristics of a normal cell and a cancer 
cell was the notion that a “normal” cell was “mortal” and “contact 
inhibited” [26], while the cancer cell was “immortal” and non-contact 
inhibited [27]. Here is where one runs against a definition that has 
misled cancer researchers, namely, what is a “normal” mortal cell?

Recent attempts to induce, experimentally, neoplastic human cells 
by exposing primary in vitro cultures of human fibroblasts or epithelial 
cells to various “carcinogens”, have failed [28-30]. Yet, when Land, et 
al. [31], exposed primary in vitro cultures to the myc oncogene, they 
obtained clones of non-cancerous cells which were “immortalized”. 
When these cells were transfected with another oncogene (Ha-ras), 
they finally isolated metastatic cancer cells. Therefore, they helped 
to establish a powerful paradigm that has, to this day, influenced 
many to believe that the first step in the carcinogenic process was 
to “immortalize” a somatic differentiated “mortal” cell, which then 
could live long enough to accrue other needed genetic and epigenetic 
changes to acquire the “hallmarks of cancer” [32,33]. 

Before elaborating on the misinterpretation of this solid set of 
experiments, one must examine another early characterization of 
the carcinogenic process, namely, the multi-stage, multi-mechanism 
concept of carcinogenesis [34-36]. In addition, the notion that a 
tumor, containing billions of cells, albeit being of heterogeneous 
genetic and phenotypic types, actually were derived from a single 
“normal” cell [2,3]. Together, these two observations must be viewed 
together.

The first stage of this carcinogenic process had to be an irreversible 
event in a single “normal” cell, which is referred to as the initiation 
stage. While the irreversible event is only “operationally” defined, 
that single cell is now unable to differentiate or become “mortal”. 
This initiation event either caused a “normal” stem cell to be blocked 
from terminal differentiation or it “re-programmed” a somatic 
differentiated cell to become an “embryonic-like stem cell”. While at 
this stage, the underlying mechanism of initiation appeared to be a 
mutagenic event, it could only be assumed. 

These “initiated” cells, next, had to be exposed to non-mutagenic 
agents, such as phorbol esters, DDT, phenobarbital, polybrominated 
biphenols, etc. [37-39], or growth conditions, such as growth 
hormones, growth factors, and cytokines [40-44], compensatory 
mitogenic conditions, such as wounding or massive cell killing [45], 
before an appearance of some benign lesions , such as a papilloma 
in the skin, enzyme altered foci of the liver, polyp of the colon or 
nodule in the breast could be seen. These benign lesions were clonally 
expanded “initiated” cells. This process of expanding the single 

initiated cell is the promotion phase [46], which occurs, operationally, 
by stimulating, mitogenically, the initiated cells and by preventing the 
apoptosis of these cells [47].

The final step, the “progression” step, operationally, brings 
about one of these clonally expanded “initiated” cells to acquire 
the phenotypes of invasiveness into other tissues and widespread 
metastatic spread [36]. Therefore, it appears that this “initiation”, 
“promotion” and “progression” process, starts from an irreversible 
step occurring in a single cell, prevents it from terminally 
differentiating, and developing into to a malignant metastatic  “cancer 
stem cell”. Consequently, one must now examine what is that single 
normal cell that ultimately becomes the “cancer stem cell” and what 
are the distinguishing characteristics of the “cancer stem cell” from 
the "cancer non-stem cell” that might provide targets for prevention 
and treatment.

What is that Single “Normal” Cell that is the Target 
Cell that becomes the “Cancer Stem Cell”?

In an important, but rarely cited, paper had shown that, using baby 
Syrian hamster embryo cells, one could only neoplastically transform 
primary in vitro cultures of these cells if, in the population, there 
existed a few morphologically distinct cells that seemed to be unable 
to “contact inhibit” [48]. When Loewenstein and Kanno [49] and 
Borek and Sacks [27] showed that normal cells could contact inhibit 
but cancer cells could not, a major clue was discovered. Cancer cells 
had no growth control, could not terminally differentiate, could not 
apoptose, but they had extended life spans or were “immortal”. These 
cells also had no gap junctional intercellular communication (GJIC). 
These three basic cellular functions in “normal” cells were associated 
with functional gap junctions [50]. Therefore, “normal”cells refer 
to either (a) normal adult organ-specific stem cells, which do not 
express connexin genes or have functional GJIC [51], or (b) normal 
progenitor cells that have expressed gap junctions and functional 
GJIC. It must be remembered that free standing normal non- stem 
cells or progenitor cells do not need gap junctions, as these gap 
junctions are not only communicating channels between conjoined 
cells, they also contribute to adherence of cells. Also, terminally 
differentiated cells might or might not have expressed connexins or 
have functional GJIC. Hepatocytes have functional gap junctions, 
whereas red blood cells do not. Important, also, to note is that, while 
normal stem cells do not express connexin genes or have functional 
gap junctions, they are growth controlled by either or both the 
extracellular matrix proteins in their niches [52] or by soluble growth 
factors from other differentiated tissue cells [53-55].

When “normal” stem cells, those cells that were isolated, showed 
that they were embryonic-like because, in their undifferentiated 
state, they did not have functional gap junctional intercellular 
communication [51]. This conclusion was made because they were 
isolated and perpetuated on mitogenically- suppressed “feeder layer” 
of fibroblasts [15]. If the isolated or “iPS” (induced pluripotent stem 
cells) or human adult organ-specific stem cells had functional GJIC, 
they would communicate with the underlying cells of the monolayer 
feeder layer cells, that have functional GJIC, and be “contact-
inhibited”  [15]. Only cancer cells, which lack GJIC, can growth on 
these feeder layers [15]. In fact, normal human adult kidney, normal 
human breast [16] and lens [20] adult stem cells have been shown to 
lack GJIC and the expression of their connexin (gap junction) genes.
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One must now explain what is meant by the word “normal” cell. 
If the “normal” cell is an adult organ specific-adult stem cell, it is a 
cell that exist in all organs that can, depending on external conditions, 
divide either by symmetrical cell division to give two daughters 
that maintains “self- renewal” properties or by asymmetrical cell 
division that gives rise to one daughter that maintains self-renewal 
property and one daughter that can go down the pathway of terminal 
differentiation [56].

Evidence of Unique Cancer Cells in a Tumor that 
Sustains Tumorigenicity

There are several observations during the early days of determining 
if some agent might be able to neoplastically transform normal cells. 
By exposing a population of primary cells to a suspected “carcinogen” 
and by suspending the exposed cells in soft agar, one could find a few 
clones of cells that would grow. “Normal” cells would not grow under 
these conditions (Later, it was shown that normal stem cells would 
show limited growth, whereas “normal” non-stem cells die by anoikis 
when grown in suspension [57]). If those clones, which grew in soft 
agar, were injected in immune-deficient mice and formed tumors, 
then the assay was interpreted as indicating the tested agent was a 
“carcinogen”. Yet, what was puzzling at the time was that millions 
of these soft-agar-positive clones had to be injected into these mice 
to form a tumor. Titrating that population down to small numbers 
rarely, if ever, gave rise to tumors. Many explanations were given to 
try to explain this observation as to why one needed millions of soft 
agar grown cells to produce a tumor, when it was assumed that each 
of these cells of these soft agar clones must have been tumorigenic.

It was only after it was discovered that the in vivo tumor and cell 
lines, derived from these tumors, contained a heterogeneous mixture 
of cells. The introduction of the “cancer stem cell” concept was tied to 
the discovery that there were only a few cells in this tumor or tumor 
cell line that could transfer the “tumorigenicity”. “Side population 
cells”, detected by staining living cells, derived from a tumor, in the 
culture medium with Hoechst 33342 dye, were shown to give rise to 
a tumor [58-67].

Clearly, it was demonstrated that fewer of these “side population 
cells” than the total tumor cell population were needed to form 
tumors when injected back into an immune-deficient mouse. These 
“side-population” cells were then associated with the term, “cancer 
stem cells” [68] and they were the cells that sustained the growth of 
the tumors and were able to reproduce the same characteristics of the 
original tumor from which they were derived [69]. These findings have 
dramatically altered new research approaches to the understanding 
the origins of cancer [7,24,70-91] and cancer therapy [92-97]. 

While these “side-population”, “cancer initiating cells” and 
“cancer stem cells” were similar to “normal stem cells”, namely, they 
express Oct4A and they do not have functional GJIC, they obviously 
are very distinct. The major difference is when the normal stem cell 
is suspended in soft agar they do grow and form 3-dimensional 
organoids, but they eventually stop growing. Upon, examination, 
one sees that there has been differentiation of these stem cells, as 
the 3-D organoids create microenvironments that induce the stem 
cells to differentiate into its normal lineages, plus, it creates a low 
oxygenated niche to protect the stem cells from differentiation. On 
the other hand, the “cancer stem cell”, treated the identical manner, 
will continue to grow, provided they have access to nutrients. While 
there is some “partial” differentiation of these “cancer stem cells” 

into non-sustaining “cancer non-stem” cells, as one sees in real in 
vivo tumors, the fact that these “cancer stem cells” are “initiated” or 
inhibited from terminal differentiation, that is, they cannot perform 
asymmetric cell division very easily.

Aside from this characteristic difference that the normal stem 
cell, when exposed to oxygen, they tend to differentiate and to seek 
protection from low oxygen microenvironments in their niche. 
This, then, leads to other features of normal stem cells, namely, 
they express Oct4A [7,16-20,51]. This is one reason that the few 
stem cells in a primary culture, when grown under normal in vitro 
culture conditions of normoxia, eventually senesce [98]. When these 
primary cells, with the few sustaining adult organ-specific stem cells, 
are cultured in low oxygen, they can have their life span extended 
[99]. This is not the case for “cancer cell lines”, for they can grow in 
normoxic conditions in vitro. Yet these cancer cell lines are always 
heterogeneous, as they are in the in vivo tumor from which they were 
derived [69].

Role of Oct4A as a Marker for both Normal Stem Cells 
and Cancer Stem Cells

One of the critical genes associated with the ES, “iPS”, somatic 
nuclear transfer stem cells, and adult human organ specific- stem 
cells is the expression of Oct4A and the non-expression of the 
connexin genes or the non-function of gap junctional intercellular 
communication [100].Cancer stem cells express the Oct4 gene 
[70,80,101], as well as drug transporter genes [71]. 

When Yamanaka showed that a series of embryonic genes, POU 
domain class 5 transcription factor 1 [Oct-3/4], SRY-box containing 
box 2 [Sox2], cellular myelocytomatosis oncogene [c-Myc], and 
Kruppel-like factor 4 [Klf4] when genetically introduced into a 
population of primary cells, one could recover “induced pluripotent 
stem cells” (iPS). As an operational test that these were embryonic-
like cells, they had to form teratomas when injected by into an adult 
animal. This was interpreted as a “re-programming” of the somatic 
differentiated fibroblasts to the embryonic state. However, an 
alternative interpretation is that, in that primary population of cells, 
there exist a few adult stem cells [102]. The reasoning was that, while 
the embryonic genes, when inserted in all the primary cells, including 
the few adult stem cells, these induced pluripotent stem cells, expressed 
exogenous Oct4, together with the expressed endogenous Oct4 gene 
in the adult stem cell, gave them a selective advantage to survive and 
they were interpreted as a “re-programmed”, “induced pluripotent 
stem cells”. Given that these pluripotent stem cells seem to express 
the differentiated expressed genes of the original cells of the primary 
culture [103], it seems that this alternative hypothesis supports the 
origin of the “iPS” cells as being the original normal adult organ-
specific stem cell of the primary population. Additional evidence 
for the lower frequency of “iPS” cells exists when late passages of the 
primary cultures are used. This is because late passages of primary 
cultures would have fewer adult stem cells in their population. That 
is why primary cultures ultimately senesce. In addition to this line of 
reason, it was shown that, when populations of adult MUSE cells are 
used to isolate “iPS” cells, they are far more efficient in the production 
of “iPS” cells than primary cultures [23].

However, probably the strongest direct experimental evidence 
that adult origin specific stem cells are the “target” cells for the 
induction of “cancer stem cells” comes from the demonstration that 
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normal adult human breast stem cells, expressing Oct4A, estrogen 
receptor, ABCG2, but not Cx43 gene, and having no functional gap 
junctional intercellular communication, could be prevented from 
terminal differentiation by introducing the SV40 large T gene into 
the stem cells [7]. This produced clones that, while not tumorigenic, 
still expressed the Oct4A, estrogen receptor, and ABCG2 genes, but 
still did not express their connexin 43 (Cx43) gene, nor did these cells 
have functional GJIC. On the other hand, when the normal human 
breast stem cell was induced to differentiate, the endogenous Oct4A 
was shut down, transcriptionally, while they expressed Cx43 and had 
functional GJIC. These normal differentiated breast epithelial cells 
could not be “re-programmed” with the SV40 large T gene. When the 
“immortalized” human breast stem cell population was X -ray treated, 
clones of weakly tumorigenic were isolated that still expressed Oct4A, 
ABCG2, and the estrogen receptor gene, but did not express their 
Cx43 gene nor did they have functional GJIC.

 Finally, when these weakly tumorigenic cells were transfected 
with the Neu oncogene, clones were isolated that were highly 
tumorigenic. These cells still had their Oct4A, ABCG2 and estrogenic 
receptor genes expressed and had no CX43 expressed nor did they 
have functional GJIC. This clonal series, starting from the normal 
breast adult stem cells to the highly tumorigenic breast “cancer stem 
cells” demonstrates that the SV40 large T did not re-program the 
original OCT4A gene, but that this endogenous Oct4A gene stayed 
expressed throughout this process. It also demonstrated that, in this 
case, the SV40 “immortalizing” viral gene, did not “immortalize” 
a mortal adult breast stem cell but it kept these adult breast stem 
cells from “mortalizing” or terminally differentiating. It, also, 
demonstrated, in vitro, the same multi-stage, multi-mechanism- 
“initiation”, “promotion”, “progression” steps as seen in vivo. The 
SV40 Large T caused the normal adult breast stem cell, which has 
unlimited proliferation potential, to have its asymmetrical cell division 
mechanism blocked, while it could still proliferate symmetrically 
upon mitogenic stimuli. This is the “initiation” step.

Further mitogenic stimuli by some radiation-induced 
chromosomal or point mutation, induced in an “initiated SV40 
clone”, it now is kept in the “immortalized” stage, since it could 
not divide asymmetrically. Further addition of the neu oncogene 
to provide additional mitogenic self- stimuli, it now became high 
tumorigenic.

The consequence of these observations and interpretation 
suggests that, to prevent “initiation” of a normal organ specific stem 
cell, one must prevent, as much as possible, stable blockage of the 
asymmetric cell division mechanism. Prevention of exposure to 
“immortalizing” viruses [104] or minimizing mutagenesis would be 
recommended [105]. While this strategy to reduce these stable down 
regulation events, especially mutagenesis, is possible, one can never 
reduce mutagenesis to a zero probability. Since there are two means 
to form point mutations, “errors in DNA repair” [106-109], and 
by “error in DNA replication” [110,111], to prevent errors in DNA 
replication would be impossible. Every time a stem cell must replicate 
during normal growth, wound healing or surgery, there will always 
be a finite chance that a mutation will be acquired. All human beings 
have “initiated” organ-specific adult stem cells in each of our organs. 
The older we get, the more we will accrue. A tumor will occur in those 
that are exposed, chronically, at threshold levels, and in the absence 
of “anti-promoters” and to these “epigenetic”, mitogenic tumor 
promoting agents or conditions [112].

One major observation might challenge this hypothesis. Namely, 
there are some “cancer stem cells” that do not express Oct4A but do 
express the connexin genes. However, as Loewenstein postulated, 
cancer cells did not have growth control, do not “contact -inhibit”, 
do not terminally differentiate and are “immortal”. How can this be? 
The answer seems to be quite simple, namely, if a stem cell just started 
to differentiate (shut off Oct4A and turn on the connexin genes, but 
at the same time, turn on an oncogene, such as src, ras, or neu), these 
oncogene proteins can post-translationally modify the connexin 
proteins to render the gap junctions to be non-functional [113]. 
Therefore, while Loewenstein was unaware of these facts at the time 
he proposed that which provides a universal phenotype for all “cancer 
stem cells”, namely the inability to perform GJIC for growth control, 
terminal differentiation, immortality and apoptosis, whether the 
connexin gene is transcriptionally suppressed or that the connexin 
protein is post-translationally modified, the cell is unable to have 
functional GJIC. Thus, these two “cancer stem cells” are unable to 
have functional GJIC, but one “cancer stem cell” never expressed the 
connexin genes or had functional GJIC, while the other “cancer stem 
cell” shut down the expression of Oct4A but started to transcribed the 
connexin gene, but their GJIC was inhibited by post-translation of the 
connexin protein. Therefore, treating both types with the same cancer 
chemotherapeutic agents will not be effective against both. For the 
embryonic -like cancer stem cell, one would have to treat them with 
some agent that will activate transcription of the connexin gene, while 
repressing the Oct4A gene. For the other partially-differentiated type 
of cancer stem cells, inhibiting the action of the expressed oncogene 
to restore the ability of the connexin protein to forge function GJIC 
would be the strategy. The example of the treatable polyp-type colon 
tumors versus the non-treatable “flat-type”- colon tumors could 
illustrate this point [84].

To be fair in testing the opposing hypothesis that cancers and 
“cancer stem cells” are derived from the “de-differentiation” or 
“reprogramming”  of somatic differentiated cells, one must examine 
the consequence of this mechanism happening in an adult organism, 
such as a human being. If a single somatic differentiated cell is 
“initiated” by the “re-programming” by some stable event to turn 
on the repressed Oct4A gene and to repress the expressed connexin 
gene, such as a mutation, then, the resulting “iPS” cell in vivo would 
lead to a teratoma. Since the majority of cancers induced in adult 
human beings are either sarcomas or carcinomas, not teratomas, it 
seems that this hypothesis could not explain the real facts of the origin 
of most human cancers.

Conclusion
Cancer stem cells are derived from “initiated” or 
benign non-cancer stem cells, which, in turn are 
derived from normal adult “organ-specific stem cells”

A hypothesis has been offered, based on the fact that normal 
organ-specific adult stem cells exist in all organs. Moreover, these 
normal adult organ stem cells express Oct4A and are unable to 
perform functional GJIC, and can be transformed into  “cancer 
stem cell" by, first, inhibiting asymmetric cell division (“initiation” 
event) and subsequently clonally amplified by mitogenic processes to 
accrue all the genetic/epigenetic changes to achieve the “hallmarks 
of cancer” of invasion and metastasis of other tissues. These cells will 
express Oct4A and not express connexin genes or have functional 
GJIC. On the other hand, a second type of “cancer stem cell” will be 
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derived from an adult stem cell that just started to differentiate by 
repressing the transcription of the Oct4A gene and transcribing the 
connexin gene. However, if these cells are “initiated” by the activation 
of expression of some oncogene, the connexin proteins are post-
translational modified to render the gap junctions unable to function. 
These cells will be Oct4A negative and connexin positive but GJIC 
negative. 

In other words, both “cancer stem cells” will be negative for GJIC, 
while the former will be Oct4A positive and the other will be Oct4A 
negative but also GJIC negative. Strategies for the prevention and 
treatment of each type will require a completely different approach.
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